Калькулятор онлайн

Обратная матрица с помощью алгебраических дополнений

Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса). Рассмотрим как найти обратную матрицу с помощью алгебраических дополнений.

Обратной матрицей называется матрицы A-1 при умножении на исходную матрицу A получается единичная матрица E.

A·A-1 = A-1 · A = E

Алгоритм нахождения обратной матрицы с помощью алгебраических дополнений:

  1. Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
  2. Найти матрицу миноров M.
  3. Из матрицы M найти матрицу алгебраических дополнений C*.
  4. Транспонировать матрицу (поменяем местами строки со столбцами) C*, получить матрицу C*T.
  5. По формуле найти обратную матрицу.
    Обратная матрица с помощью алгебраических дополнений

Пример

Рассмотрим данный метод на примере. Дана матрицы 3х3:

Обратная матрица с помощью алгебраических дополнений

Найдем определитель (детерминант) матрицы, detA = 12 обратная матрица существует.

Найдем минор M11 и алгебраическое дополнение A11. В матрице А вычеркиваем строку 1 и столбец 1.

Обратная матрица с помощью алгебраических дополнений

Найдем минор M12 и алгебраическое дополнение A12. В матрице А вычеркиваем строку 1 и столбец 2.

Обратная матрица с помощью алгебраических дополнений

Остальные миноры и алгебраические дополнения находятся аналогично. В итоге получаем матрицу C*.

Обратная матрица с помощью алгебраических дополнений

Найдем транспонированную союзную матрицу алгебраических дополнений C*T.

Обратная матрица с помощью алгебраических дополнений

Найдем обратную матрицу. Ответ:

Обратная матрица с помощью алгебраических дополнений

Если вы нашли ошибку или идею для сайта пишите!
captcha